A list of useful trigonometric identities. Generally used for manipulating equations.
Fundamental identities
tan(x)=cos(x)sin(x)
sec(x)=cos(x)1
csc(x)=sin(x)1
cot(x)=tan(x)1
Even-odd identities
sin(−x)=−sin(x)
cos(−x)=cos(x)
tan(−x)=−tan(x)
Sine and cosine law
sin(A)a=sin(B)b=sin(C)c
asin(A)=bsin(B)=csin(C)
c2=a2+b2−2abcos(C)
cos(C)=1aba2+b2−c2
Pythagorean identities
cos2(x)+sin2(x)=1
1+tan2(x)=sec2(x)
1+cot2(x)=csc2(x)
Double angle identities
We can derive the sin and cos identities with a technique involving the binomial theorem.
sin(2x)=2sin(x)cos(x)
cos(2x)=cos2(x)−sin2(x)=2cos2(x)−1=1−2sin2(x)
tan(2x)=1−tan2(x)2tan(x)
Compound angle identities
sin(A±B)=sin(A)cos(B)±cos(A)sin(B)
cos(A±B)=cos(A)cos(B)∓sin(A)sin(B)
tan(A±B)=1∓tan(A)tan(B)tan(A)±tan(B)